• <menuitem id="7ymee"><strong id="7ymee"></strong></menuitem>
    <tbody id="7ymee"></tbody><progress id="7ymee"></progress>
  • <progress id="7ymee"><bdo id="7ymee"></bdo></progress>
      <samp id="7ymee"><ins id="7ymee"><u id="7ymee"></u></ins></samp>
      <tbody id="7ymee"></tbody>
          <samp id="7ymee"><ins id="7ymee"><u id="7ymee"></u></ins></samp>
          <samp id="7ymee"></samp>

          芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

          熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

          合作客戶/

          拜耳公司.jpg

          拜耳公司

          同濟大學

          同濟大學

          聯合大學.jpg

          聯合大學

          寶潔公司

          美國保潔

          強生=

          美國強生

          瑞士羅氏

          瑞士羅氏

          當前位置首頁 > 新聞中心

          Delta-8 動物胃腸道體內中藥物的溶解度的測定——結論、工具書類!

          來源:上海謂載 瀏覽 787 次 發布時間:2021-11-26

          結論


          胃腸道pH值和緩沖容量的種間差異是重要的考慮因素,尤其是對胃腸道給藥的pHresponsive配方和可電離藥物。 因此,兔子和豬的空腸、回腸和近端結腸具有相對較高的緩沖容量,而豬遠端結腸具有較低的緩沖容量是非常重要的考慮因素。 與人相比,大鼠、兔和豬的近端小腸和升結腸的液體的滲透壓和表面張力也較高。 胃腸道特征的這些差異導致潑尼松龍在大鼠體內的溶解度較高(近端結腸除外),而潑尼松龍在豬和兔體內的溶解度與人類相當。 因此,如果在大鼠的體液中測量,中性化合物潑尼松龍的溶解度可能被高估。 另一方面,可電離藥物美沙拉秦在兔和豬體內的溶解度在小腸中部高于人,在結腸中低于人,僅在小腸遠端與人相當。 胃腸道環境的差異,如pH值、緩沖容量、滲透壓和表面張力,導致藥物溶解度的差異。 在兔子和豬中,美沙拉秦的溶解度在沿胃腸道向下移動時發生顯著變化,這在很大程度上受管腔液的pH值和滲透壓的影響。


          工具書類


          1. Flaisher-Grinberg S et al. Models of mania: from facets to domains and from animal models to model animals. J Psychopharmacol 2010; 24: 437–438.


          2. Insel TR. From animal models to model animals. Biol Psychiatry 2007; 62: 1337–1339.


          3. Hannah-Poquette C et al. Modeling mania: further validation for Black Swiss mice as model animals. Behav Brain Res 2011; 223: 222–226.


          4. Calabrese EJ. Gastrointestinal and dermal absorption – interspecies differences. Drug Metab Rev 1984; 15: 1013–1032.


          5. Kararli TT. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory-animals. Biopharm Drug Dispos 1995; 16: 351–380.


          6. McConnell EL et al. Measurements of rat and mouse gastrointestinal pH, fluid and lymphoid tissue, and implications for in-vivo experiments. J Pharm Pharmacol 2008; 60: 63–70.


          7. Ward FW, Coates ME. Gastrointestinal pH measurement in rats: influence of the microbial flora, diet and fasting. Lab Anim 1987; 21: 216–222.


          8. Smith HW. Observations on the Flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol 1965; 89: 95–122.


          9. Clarysse S et al. Postprandial evolution in composition and characteristics of human duodenal fluids in different nutritional states. J Pharm Sci 2009; 98: 1177–1192.


          10. Kalantzi L et al. Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 2006; 23: 165–176.


          11. Fadda HM et al. Drug solubility in luminal fluids from different regions of the small and large intestine of humans. Mol Pharm 2010; 7: 1527– 1532.


          12. Merchant HA et al. Assessment of gastrointestinal pH, fluid and lymphoid tissue in the guinea pig, rabbit and pig, and implications for their use in drug development. Eur J Pharm Sci 2011; 42: 3–10.


          13. ToxNet. Mesalamine: Toxicology data network (ToxNet). US National Library of Medicine, CASRN: 89-57-6. 2014. (http://toxnet.nlm.nih.gov/cgi-bin/sis/ search2/r?dbs+hsdb:@term+@rn+@ rel+89-57-6, last accessed 25th June 2014).


          14. Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP, ACDlogP and KowWin to experimentally determined values. Int J Pharm 2005; 294: 185–192.


          15. McConnell EL et al. Gut instincts: explorations in intestinal physiology and drug delivery. Int J Pharm 2008; 364: 213–226.


          16. Mudie DM et al. Physiological parameters for oral delivery and in vitro testing. Mol Pharm 2010; 7: 1388– 1405.


          17. French DL, Mauger JW. Evaluation of the physicochemical properties and dissolution characteristics of mesalamine: relevance to controlled intestinal drug delivery. Pharm Res 1993; 10: 1285–1290.


          18. Perez de la Cruz Moreno M et al. Characterization of fasted-state human intestinal fluids collected from duodenum and jejunum. J Pharm Pharmacol 2006; 58: 1079–1089. 19. Diakidou A et al. Characterization of the contents of ascending colon to which drugs are exposed after oral administration to healthy adults. Pharm Res 2009; 26: 2141–2151.

          Delta-8 動物胃腸道體內中藥物的溶解度的測定——摘要、介紹

          Delta-8 動物胃腸道體內中藥物的溶解度的測定——材料和方法

          Delta-8 動物胃腸道體內中藥物的溶解度的測定——結果和討論

          Delta-8 動物胃腸道體內中藥物的溶解度的測定——結論、致謝!

          最近最新电影大全免费观看