<tbody id="k8mxi"><nobr id="k8mxi"></nobr></tbody>
  • <progress id="k8mxi"></progress>
    <menuitem id="k8mxi"></menuitem>
    <menuitem id="k8mxi"></menuitem>
    <progress id="k8mxi"><bdo id="k8mxi"><dfn id="k8mxi"></dfn></bdo></progress>

    <tbody id="k8mxi"><nobr id="k8mxi"></nobr></tbody>
  • <progress id="k8mxi"><bdo id="k8mxi"></bdo></progress>

    <tbody id="k8mxi"></tbody>

    芬蘭Kibron專注表面張力儀測量技術,快速精準測量動靜態表面張力

    熱線:021-66110810,66110819,66110690,13564362870 Email: info@vizai.cn

    合作客戶/

    拜耳公司.jpg

    拜耳公司

    同濟大學

    同濟大學

    聯合大學.jpg

    聯合大學

    寶潔公司

    美國保潔

    強生=

    美國強生

    瑞士羅氏

    瑞士羅氏

    當前位置首頁 > 新聞中心

    石墨烯與磷脂之間的作用——摘要、介紹

    來源:上海謂載 瀏覽 773 次 發布時間:2021-11-11


    摘要


    氧化石墨烯 (GO) 已證明 在生物醫學領域的各種有前途的應用。 但 關于 GO 如何與細胞膜相互作用的信息或 模型系統仍然極其有限。 也是未知數 GO 在與脂質相互作用時會自我定向。 在這項研究中, Langmuir 單層技術應用于空氣- 研究水/水界面的性質和方向 GO 和脂質模型之間的相互作用。 五脂 (DODAB、DSEPC、DSPC、DSPA 和 SA)具有相同的 18-碳烷基鏈但不同的電荷頭基被有意選擇以使可能的相互作用合理化。 實驗結果表明,這種相互作用是由極性頭部基團和 GO 之間的靜電相互作用控制的。 GO 可以摻入帶正電荷的脂質 DODAB 和 DSEPC 的單層,但不能摻入中性或負電荷的脂質 帶電脂質(DSPC、DSPA 和 SA)。 當 GO 被注入到帶正電荷的單層下面的亞相中時 脂質 DODAB 和 DSEPC,觀察到不同的表面壓力行為。 “edge-in”而不是“edge-in”的方向模型 提出了“face-in”來解釋GO對DODAB單層的吸附。

    介紹


    石墨烯,一種單原子厚的 sp2 平面片 -雜交 碳原子,最近引起了極大的關注 由于其新穎的光學,各種研究和應用, 機械、電子、熱和生物特性。1,2 氧化石墨烯 (GO) 具有類似的原子級薄結構 石墨烯,但含有大量的含氧 官能團,例如邊緣的羧基和羥基 和基面上的環氧樹脂。1 GO 已經證明 在生物傳感和生物醫學領域的優勢應用 由于其特殊的物理和化學性質,如 低成本制造工藝,豐富的膠體性質,高 吸附性和通用熒光猝滅。 3-6 最后 幾年見證了GO的巨大進步或功能化 GO 作為一種有效的方式來傳遞治療分子 生物活性肽、蛋白質、核酸抗癌 藥物。4,7,8 GO 也被用于生物傳感,3,9 成像,10?12 實時監測蛋白酶活性、13,14 和近紅外 癌癥和阿爾茨海默病的光熱治療。 15-17


    GO在生物系統中的應用需要解決 GO 和細胞成分之間可能的相互作用,例如 作為膜。 膜是自然的二維 (2-D) 屏障,物理分隔細胞的內部環境 從外部環境來看。 作為主要結構部件 在細胞膜中,磷脂參與多種 生物反應,如細胞粘附、離子電導率、 疾病相關反應,以及信號和 材料。 18 以前的研究報告說,GO 可能是 應用于細胞成像以及藥物和基因傳遞, 表明它可能進入細胞。8,10,11 但關于 GO 如何與細胞膜或模型系統相互作用的研究仍然存在 19 也得到了不一致的結果 GO 的細胞毒性以及它如何進入細胞膜。 20,21 而且,與球形或管狀納米材料相比, GO 是一個極薄的層(~1 nm),具有很大的表面積 和不規則的形狀。 1 目前尚不清楚 GO 如何定向 自身與細胞膜相互作用時。 因此它是 從根本上了解理解的本質 GO 與各種脂質模型之間的相互作用。 這樣的 知識可以為未來提供更多信息 GO在生物和生物醫學領域的應用。


    除了 GO 在生物傳感和生物醫學方面的應用 使用 GO 和其他一些方法研究、構建和組織細觀或宏觀定義明確的復合材料 組件已被證明是簡單而有用的 超級電容器等電子器件的制備方法 電極、導電聚合物和場效應器件。 22-24 因此,理解和操縱交互, GO 與其他對象之間的定向和結構控制 復合材料中的成分對于 潛在的制造和應用。


    Langmuir 單層膜和 Langmuir-Blodgett (LB) 膜在 空氣-水/水界面是典型的二維 (2-D) 表面化學方法,廣泛應用于 兩親分子的結構和性質研究 空氣-水/水界面,例如蛋白質和脂質。 25-27 這些方法的一個顯著特點是層結構的內在和精確控制,直到分子 等級。 由于羧基的去質子化 GO 片的邊緣,22,28 靜電相互作用是預期的 帶負電荷的 GO 和帶電荷的脂質之間。 空氣- 水/水界面有望作為一個完美的 研究脂質和 GO 之間相互作用的游樂場, 因為兩親脂質很容易將自己定位在 極性/帶電基團的界面合并在 親水性水相,而非極性部分面對 朝氣相。


    在這項研究中,為了理解和定義性質 GO和脂質模型之間相互作用的方向和方向 具有不同頭部基團的朗繆爾單層技術 應用于空氣-水/水界面以表征 分子堆積、吸附和偶極子等性質 片刻。 具有相同烷基鏈長度的五種脂質(18 碳)但不同的電荷和頭基是 選擇合理化可能的相互作用。 所有烷基 本研究中使用的脂質有 18- 碳鏈消除終端可能的影響 烷基,如方案 1 所示。 Langmuir-Blodgett 薄膜 轉移到基板上以進一步表征 使用原子力顯微鏡的單層形態 (原子力顯微鏡)。


    方案 1. 脂質和氧化石墨烯的化學結構



    石墨烯與磷脂之間的作用——摘要、介紹

    石墨烯與磷脂之間的作用——實驗部分

    石墨烯與磷脂之間的作用——結果和討論

    石墨烯與磷脂之間的作用——結論、致謝!

    最近最新电影大全免费观看